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Based Segmentation in Street View Imagery 

Mahdi Khouri Shandiz*, Abdollah Amirkhani *(C.A.) 

Abstract: Protecting privacy in street view imagery is a critical challenge in urban 
analytics, requiring comprehensive and scalable solutions beyond localized obfuscation 
techniques such as face or license plate blurring. To address this, we propose a novel 
framework that automatically detects and removes sensitive objects, such as pedestrians 
and vehicles, ensuring robust privacy preservation while maintaining the visual integrity 
of the images. Our approach integrates semantic segmentation with 2D priors and 
multimodal data from cameras and LiDAR to achieve precise object detection in 
complex urban scenes. Detected regions are seamlessly filled using a large-mask 
inpainting technique based on fast Fourier convolutions (FFC), enabling efficient 
generalization to high-resolution imagery. Evaluated on the SemanticKITTI dataset, our 
method achieves a mean Intersection over Union (mIoU) of 64.9%, surpassing state-of-
the-art benchmarks. Despite its reliance on accurate sensor calibration and multimodal 
data availability, the proposed framework offers a scalable solution for privacy-sensitive 
applications such as urban mapping, and virtual tourism, delivering high-quality 
anonymized imagery with minimal artifacts. 

Keywords: Privacy Protection, Street View Imagery, Large Mask Inpainting, Semantic 
Segmentation, Multi-modality, Lidar. 

 

1  Introduction 

TREET view images (SVI), which are obtained from 
sources such as Google Street View (GSV), Here 

Map Street View, Baidu Street View, Mapillary Street 
View, Tencent Street View, etc., are vital tools for 
studying and understanding different regions of the 
world. Among these sources, GSV has a wide coverage 
in 114 countries, which broadly displays the different 
regions of these countries. By providing comprehensive 
images from different parts of the world, this street view 
provides unique information for researchers, travelers, 
and those interested in spaces and cities [1]. In recent 
years, GSV has been the largest and perhaps the most 
well-known collection of street-level images collected. 
The GSV service was first rolled out in 2007 as an 
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experiment in some cities in the United States [2]. After 
that, it was developed more widely around the world in 
the following years. This service provides the possibility 
to view panoramic images of different streets and 
passages and is now available in many cities and regions 
around the world. This service enables users to 
efficiently search for and locate their points of interest. 
Additionally, it facilitates virtual tours of the street-level 
environment, facilitating a diverse range of applications 
such as real estate search, virtual tourism, travel 
planning, driving routes, and more [3]. GSV is a useful 
and highly popular service. However, it raises significant 
privacy concerns. The images captured from the street 
level contain numerous personally identifiable features, 
such as faces and license plates [4]. To tackle this 
challenge, Google has introduced a sliding window-
based system aimed at automatically blurring faces and 
license plates in street view images [3]. Although this 
work reduces the concerns related to the disclosure of 
information and the privacy of people, still information 
such as clothing items, colors, patterns, body shape, 
height size, geographic location information, and also 
vehicles in the images that information such as reveals 
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the type and color of the vehicle, etc. To address this 
issue, we propose an automated method to remove all 
pedestrians and vehicles from street view images. Our 
proposed method uses semantic segmentation to detect 
vehicles and pedestrians, and after detection, it removes 
them and fills the large-scale gaps. For semantic 
segmentation, we suggest employing 2D Priors 
(2DPASS) [5], a method tailored to improve 3D LiDAR 
semantic segmentation by integrating insights from 2D 
priors derived from cameras. For semantic segmentation, 
2DPASS combines multi-modal information into a 
single point cloud. Additionally, given the presence of 
significant masks in the images, we recommend 
employing large mask inpainting (LaMa) [6]. The 
method is suggested for image inpainting, highlighting 
its capability to generalize to high-resolution images 
despite being trained solely on low-resolution data. 

In sum, we make four key claims, which are supported 
by our experimental findings: (i) Our framework 
integrates multimodal data from LiDAR and cameras, 
enhanced by a knowledge distillation strategy, to achieve 
state-of-the-art segmentation accuracy for pedestrians 
and vehicles in challenging urban environments with 
complex lighting and occlusions. (ii) Using an inpainting 
method based on fast Fourier Convolutions, our 
approach effectively fills large-scale gaps created by 
object removal, achieving high-quality reconstructions in 
high-resolution street view images while maintaining 
computational efficiency. (iii) Unlike prior methods that 
focus on localized obfuscation (e.g., face or license plate 
blurring), our method provides a comprehensive solution 
by removing all sensitive objects, ensuring robust 
privacy protection while preserving the visual integrity 
of the images. (iv) The proposed algorithm is scalable to 
large-scale datasets, including street view imagery, and 
achieves an average inference time of less than 600 
milliseconds per image. It operates efficiently with 
minimal computational overhead on standard hardware, 
such as an NVIDIA Tesla T4 GPU. 

2 Related work 

2.1 Detection and removal of objects 
To remove unwanted areas, it is necessary to identify 

them first. This operation is known as region of interest 
(ROI) detection [7]. Following the detection of regions 
of interest, the subsequent task involves their removal 
and background filling. Recent strides in deep learning-
based object detection methods have showcased strong 
performance in ROI detection, affirming their 
effectiveness in this domain. Multi-layer neural 
networks such as CNN are designed to directly 
recognize visual patterns in pixels, and powerful 
architectures such as ResNet [8] and Xception [9] have 
been developed. At the same time, with the advancement 
of CNN technology, object detection algorithms based 

on CNN have also been developed and models like You 
Only Look Once (YOLO) [10] and DeepLab v3+ [11] 
have been presented. In these methodologies, the initial 
step involves identifying desired objects and areas based 
on their contours and distinctive features through image 
recognition and segmentation algorithms. However, with 
CNN-based object detection for ROI determination, 
there's no requirement to define a specific target object 
policy for the ROI. Instead, we're dealing with a mask 
that completely covers the desired subject. However, 
acquiring background images devoid of moving 
obstacles presents a challenge in practical projects. For 
this purpose, efforts are made to obtain accurate and 
flawless background images by using various data and 
algorithms. Also, in the field of segmentation of objects, 
by using several sensors like LiDAR and cameras, 
efforts are made to combine the information and benefit 
from the advantages of each, so that the accuracy and 
efficiency in segmentation are improved [12]. The 
RGBAL method [12] involves converting images from 
RGB color format into a polar grid representation. It 
then employs fusion strategies at both early and mid-
level stages to design them. PointPainting [13] utilizes 
image segmentation logits, transferring them to LiDAR 
space to enhance the performance of the LiDAR 
network, utilizing structures such as a spherical view or 
a bird's eye view (BEV). The PMF approach [14] utilizes 
the joint integration of two techniques within the camera 
coordinates. Nevertheless, at both training and inference 
stages, these techniques rely on multi-sensor inputs. In 
addition, Multimodal data are usually computationally 
compressed. At the global level, [15] has introduced an 
extensive framework from fine to coarse, which includes 
two networks. This approach involves the network 
initially prioritizing the completion of the coarse global 
structures, while the second network uses it as a guide to 
enhance the finer local details. In recent research, two-
step approaches that adhere to the concept of structure-
texture decomposition [16] have gained popularity. 
Some researches [17, 18] modify the framework in such 
a way that the resulting components are generated 
concurrently instead of sequentially. Furthermore, 
various studies have put forward two-stage approaches 
employing the completion of different types of structures 
as an intermediate step. For instance, in [19], the focus is 
on salient edges, while [20] tackles semantic 
segmentation maps, [21] deals with object foreground 
contours, [22] addresses gradient maps, and [23] focuses 
on smooth edge-preserved images. Point-based methods 
face a challenge known as overhead, stemming from 
their costly random memory access, particularly 
noticeable in large-scale outdoor scenes. Voxel-based 
methods offer a solution by employing thin convolution 
techniques. As a follow-up, SPVNAS [24] introduces 
the concept of sparse point-voxel complexity. To 
mitigate the challenge posed by imbalanced point 
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distribution, Cylinder3D [25] introduces a methodology 
based on cylindrical partitioning and integrates a 3D 
convolution network for structural enhancement. 
RPVNet exploits three diverse point representations and 
amalgamates them into a cohesive network. To improve 
the network training performance, 2DPASS [5] and 
PVKD [26] use knowledge distillation strategies to 
enhance the network. Knowledge distillation (KD) 
originates from the pioneering work of G. Hinton et al 
[27]. Its primary aim is to transfer hidden insights from a 
teacher model with excessive parameters to a more 
streamlined student model. A plethora of approaches 
have been proposed, encompassing diverse forms of 
knowledge transfer, including intermediate features [28], 
visual attention maps [29], cross-sample similarity 
scores [30], region-level affinity scores [31], among 
others. Inspired by [5], we reach very strong results in 
semantic segmentation using knowledge distillation of 
2D and 3D information. 

2.2 Adversarial inpainting 

Inpainting is an image processing process used to be 
utilized for reconstructing images that have suffered 
from loss or damage of information caused by factors 
like occlusion, blurring, or transmission interference. 
This process assimilates information regarding the 
absent segments of the image, grasps the holistic 
structure of the image, and integrates other pertinent 
details to ensure precise reconstruction. Inpainting 
serves various functions and finds applications in 
numerous image processing scenarios, such as removing 
unwanted objects, repairing damage, and eliminating 
occluded areas on objects. The multi-image fusion 
technique for occlusion-free texture was introduced by 
Böhm et al. [32]. This method utilizes a process akin to 
background subtraction. Within a set of captured images, 
pixels sharing similar RGB values are clustered together, 
and outliers are subsequently filtered out. The 
background pixel is determined by selecting the pixel 
with the highest number of "votes" from the remaining 
clustered pixels. The early methods for performing 
inpainting operations inside the image, it was mainly 
based on data. These approaches included the use of 
patch-based methods and nearest neighbors. In the era of 
deep learning, an early approach in indoor inpainting 
involved employing a convolutional neural network 
architecture featuring an encoder-decoder structure, 
coupled with adversarial training, to complete missing 
elements [33]. This approach is known as one of the 
common methods for deep inpainting. In the nascent 
phases of deep learning research, Pathak et al [34] 
introduced an encoder-decoder architecture, trained 
using a combination of pixel-based adversarial loss and 
reconstruction loss. For the enhancement of image 
completion stability, Iizuka et al. [35] introduced global 
and local context discriminators into the training of a 

fully convolutional completion network. Their primary 
focus lies in discriminator design, complemented by the 
utilization of a simple encoder-decoder network as the 
generator. Additionally, [36] introduced an improved 
patch-based discrimination approach, which later gained 
traction among researchers. Furthermore, [37] proposed 
an innovative approach involving patch-based 
discrimination. Subsequently, they implemented a 
Partial convolution operation, followed by an automated 
mask update step, aimed at enhancing the filling of 
irregular holes. [38] introduced an encoder network for 
image completion, leveraging a pyramid-context and 
attention transfer. Meanwhile, to simultaneously recover 
both structure and texture, Liu et al. [39] integrated 
texture features and structure features through feature 
equalization. Additionally, [40] proposed mask-aware 
convolution along with point normalization, catering to 
the dynamic concept of image inpainting. Wang et al. 
[41] proposed regional composite normalization and 
migratable convolution modules to improve the 
utilization of valid pixels throughout the inpainting 
procedure. In a similar vein, Zhu et al. [42] utilized a 
semantic segmentation map to guide the inpainting 
process of mixed scenes, requiring supplementary 
semantic segmentation annotations during the training 
phase. These methods sometimes face significant 
challenges due to the lack of sufficient constraints, 
significant artifacts such as smooth textures, and false 
semantics. Yu et al. [15] refined a generative approach 
for inpainting by integrating both coarse and refined 
grids. In the refinement network, they implemented 
contextual attention mechanisms to capture extensive 
correlations spanning longer distances within the input 
data.  Nazeri et al. [43] introduced a two-step edge-
guided approach for image inpainting. In their approach, 
they first reconstructed the edge map of the occluded 
area and then combined it with the incomplete image to 
form the input for the subsequent inpainting stage. 
Architectures based on U-Net [44] are also popular 
choices in image completion. Fruh et al. [45] introduced 
an automatic method for creating textured 3D models of  
urban environments This method uses a vehicle 
equipped with cameras and laser scanners on city streets 
and creates 3D point clouds. Then, useful information is 
extracted by analyzing the images and removing the 
pixels of the foreground objects. Finally, textured 3D 
models are created by filling holes using methods such 
as cut-and-paste and interpolation. One of the main 
challenges in this field is the proper understanding of the 
local and global context. To improve this issue, [35] 
proposed an approach that uses incorporated dilated 
convolutions [46] to expand the knowledge domain of 
the network in image completion. Additionally, work on 
maintaining global and local consistency led to the 
introduction of two discriminators. In a study by [47], 
they proposed to combine branches in  
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Fig 1. Overall framework of our proposed method. x represents the input image, m denotes the mask produced by the mask 

generator block, x́ signifies the input image with the mask and x� indicates the output inpainted image. 

the complement network, each with different receiving 
contexts. The image inpainting model leverages stacked 
generative networks to ensure seamless texture and color 
coherence between the generated regions and their 
surrounding context. Furthermore, the integration of the 
contextual attention model into the networks allows for 
the borrowing of detailed information from distant 
spatial locations. To address the discrepancy between 
open-source datasets and facade inpainting content, this 
approach emphasizes training on custom datasets 
gathered from street facade images [15]. Another 
method, a new mechanism based on FFC introduced by 
[6]. Additionally, this approach is aligned with the 
utilization of transformers in computer vision [48], while 
also considering the Fourier transform as a lightweight 
substitute for self-attention [49]. 

3 Our method 

Our proposed approach introduces an end-to-end 
method designed to detect and eliminate undesired 
objects from images automatically. The removal process 
is done by using the most accurate labels and creating 
masks on unwanted objects. To begin with, we used the 
SemanticKITTI dataset and trained the network with 18 
labels for semantic segmentation. This type of semantic 
segmentation is pivotal for understanding vast outdoor 
environments and holds widespread applications in 
fields such as robotics and autonomous driving.  After 
removing the unwanted images, large holes are created 
in the image, to fill them we used the internal inpainting 
technique of the image. We did this using a simple one-
step network called LAMA (Large Mask Inpainting). 
The implementation steps of our method are illustrated 
in Fig. 1. Initially, the input image is processed by the 

mask generator block. Subsequently, the resulting mask 
is passed to the inpainting block along with the input 
image, facilitating the filling of the void created by the 
mask.  

3.1 Semantic segmentation 
In recent years, the research community has been 

deeply engaged in enhancing the understanding of 
natural scenes, leveraging camera images [50, 51] or 
LiDAR point clouds [24, 25, 52] as input sources.  
However, single-sensor methods have often faced 
problems in complex environments, these problems are 
caused by their inherent limitations. The input sensors 
clearly specify that the cameras provide accurate texture 
and fine-texture information, but do not perform reliably 
in detecting depth features, which are usually vaguely 
shaped and in low-light conditions. In contrast, extensive 
depth information regardless of light variance and 
LiDAR provide accurate, but only record thin 
information without texture information. Given the 
complementary nature of cameras and LiDAR, utilizing 
both types of sensors are advantageous for 
understanding the surrounding environment. Recently, 
numerous commercial vehicles have been outfitted with 
both LiDAR and cameras systems, enabling them to 
capture street  effectively. This trend has spurred 
research endeavors aimed at improving semantic 
segmentation by amalgamating insights from two 
complementary sensors [12-14]. These approaches first 
create a 3D map between points using sensor calibration 
and then generate. 2D pixels using point clouds on 
image planes.  Through point-to-pixel mapping, models 
merge pertinent features in images with point features, 
computed to derive final semantic metrics. However, 
fusion-based methods exhibit the following limitations: 
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Fig 2. Mask generator block using two-dimensional priors. Leveraging the 2D information from the camera image, a small 
segment is initially extracted from the original image. Subsequently, this extracted segment, along with the LiDAR point cloud, 

undergoes independent processing through 3D and 2D encoders simultaneously to generate multi-scale features in parallel. 

a. Point-to-pixel mapping is impractical for points 
outside the image due to the differences in field of view 
(FOV) between LiDAR and cameras. Fusion-based 
methods are severely constrained by the fact that the 
field of view of most LiDAR systems and cameras only 
overlap to a small extent. 

   b. Fusion-based methods necessitate greater computing 
resources as they concurrently process both point clouds 
and images during runtime, thereby substantially 
enhancing the performance of real-time applications. 
The employed network primarily focuses on improving 
the semantic segmentation of the LiDAR point cloud by 
aiming to assign a semantic label to each point. Figure 2 
provides a visual representation of the workflow steps of 
the Mask Generator block, which utilizes 2D Priors. The 
operation of the network is that first, camera images that 
are large in size (for example, 1242 x 512) are 
impossible to send to the multi-modal pipeline due to 
their large size. Therefore, a small patch with the size 
480 ×  320 is randomly sampled from the original 
camera image, and training processing is performed with 
this small patch, in order to increase the execution speed. 
Following sampling, the LiDAR point cloud and 
cropped image patch undergo independent processing 
through separate 2D and 3D encoders. This entails 
extracting 2D and 3D features concurrently from two 
distinct backbones. Then, using multi-scale fusion-to-
single KD, the 3D network is enhanced using multiple 
features. This integration includes texture information, 
color-sensitive 2D features, and 3D core knowledge 
preservation. Ultimately, all 2D and 3D features at each 
scale contribute to generating semantic segmentation 
predictions, which are supervised by 3D labels. During 

the inference stage, the corresponding two-dimensional 
branch can be omitted, thus effectively circumventing 
the additional computational overhead in real-world 
applications. This structure provides an improvement in 
actual performance speed compared to methods based on 
information fusion. 

4 Architectures 

4.1 Modal-specific architectures 
As explained in Fig. 2, in this block, two different 

networks are used to independently encode the 
multiscale features of the 3D point cloud and the 2D 
image. These two networks work as follows:  

2D Encoder: This network uses ResNet34 [8] as a two-
dimensional network to encode two-dimensional image 
features and operates using two-dimensional 
convolution, and its task is to transform the image. It is 
two-dimensional with different features and different 
scales.  

3D Encoder: For the 3D network, the concept of sparse 
convolution [53] is used to build the 3D network. One of 
the features of this type of operation is its inherent 
sparsity, which means that the operation is only applied 
to voxels that have non-empty values. In other words, in 
this network, calculation operations are performed only 
on the voxels that have data.  

ResNet bottleneck structure: at each scale (2D and 
3D), a hierarchical encoder with a design similar to that 
of the decoder in [24] is used. Also, ReLU is replaced by 
Leaky ReLU [54]. These two 2D and 3D networks 
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extract different features and scales from 3D point 
clouds and 2D images. 

These features are extracted from different scales, 
known L as feature maps, and used to enhance the 3D 
network and use in semantic segmentation predictions. 
Then the two-dimensional and three-dimensional 
features of each scale are obtained and displayed as 
�Fl2D�l=1

L  and  �Fl3D�l=1
L . These features are then used to 

enhance the 3D network and used in semantic 
segmentation predictions. This step encompasses multi-
scale fusion-to-single knowledge distillation, leveraging 
multi-modal features to enhance the performance of the 
3D network. This integration involves incorporating 
texture information and color-aware 2D features, while 
also preserving the original 3D knowledge. In the final 
analysis, these features are harnessed across multiple 
scales to generate semantic segmentation predictions. 
These predictions are then overseen by unadulterated 3D 
labels. This approach allows the network to have 
different features and different scales to interpret and 
distinguish different components of scenes and objects. 
Within the two-dimensional network, the FCN decoder 
[55] has been implemented to extract features from each 
encoder layer. This indicates that the feature map Dl

2D 
from the lth decoder layer can be obtained by sampling 
the feature map from the encoder layer at position (L −
 l +  1) − th. This sampling operation is performed 
sequentially from lower layers to higher layers, and the 
sampled feature maps are combined through the merge 
operation. Finally, for the semantic segmentation process 
in the 2D network, the combined feature map is obtained 
through a linear classification. This linear classification 
contributes to the final image of semantic segmentation 
prediction. In the 3D network, the U-Net decoder isn't 
utilized; In contrast, the approach involves sampling 
features from different scales to match the original size, 
followed by binning them before feeding into the 
classifier. During knowledge distillation, the features of 
point clouds and images are initially merged, ensuring 
that the information conveyed by image features is 
amalgamated with the existing information from point 
clouds. Following this, an alignment process is 
conducted in a unidirectional manner between the fused 
features and those extracted from the point cloud. This 
means determining the weight that is assigned to image 
features and point cloud so that each information source 
determines its participation and contribution in 
producing the final output. In this way, finally, by 
combining image features and point cloud and 
performing unidirectional alignment, a compact and 
high-quality knowledge model is obtained for use in 
subsequent processes, such as image completion or 

pattern recognition. In this method, the fusion accurately 
preserves the complete information of the multivariate 
data. Furthermore, through unidirectional alignment, 
fusion yields enhanced point cloud features while 
safeguarding modality-specific information integrity. 
Regarding modality fusion, directly fusing the raw 3D 
features F�l3D to their 2D counterparts F�l2D,  for each scale 
is inefficient, given the disparity in 2D and 3D feature 
representations stemming from different backbone 
architectures. So, First, we convert F�l3Dto F�l

learner 
through a 2D MLP learner, aiming to mitigate the 
feature gap. Subsequently, F�l

learner not only proceeds to 
the next concatenation with the 2D features F�l2D to 
obtain the combined features F�l

2D3D
 through another 

MLP but also through a skip connection to the original 
dimension features to enhance the three-dimensional 
features of F�l3De. In addition, similar to the attention 
mechanism, the final augmented composite features 
F�l2D3De with: 

F�l2D3De =  F�l2D + σ �MLP�F�l2D3D ��⊙  F�l2D3D,             (1) 

it will be obtained; where σ represents the sigmoid 
activation function. 

Using a knowledge distillation scheme in this 
framework has several advantages. Firstly, it combines 
the 2D learner and fused distillation into single, rich 
texture information, which enhances the learning of 3D 
features without losing any modal information. This 
approach furnishes detailed information in three 
dimensions. Moreover, during the training phase, the 
fusion branch operates exclusively, indicating that the 
advanced model can be deployed with minimal 
additional computational overhead during inference. 
This structure allows the network to better learn 
hierarchical information while making predictions more 
efficiently. Ultimately, this structure may provide the 
best use of the information contained in the features and 
contribute to the accuracy of the predictions. 

4.2 Point-to-Pixel mapping 
Transferring information directly from one mode to 

another poses a challenge due to the representation of 
2D and 3D features as pixels and points, respectively. 
The primary objective of this section is to generate 
paired features using two distinct methods. The process 
of generating these coupled features in both modes is  
detailed in Fig. 3. For instance, the generation process of 
2D features is depicted in row b of Fig. 3. The process 
entails extracting a small patch I from the original 
image, 
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Fig 3. Generation of 2D and 3D features. Part (a) depicts the generation of 3D features, where point-to-voxel (P2V) mapping is 
easily obtained and voxel features are interpolated onto the point cloud. Part (b) showcases the 2D feature generation, where the 
point cloud is initially projected onto the image segment, creating a point-to-pixel (P2P) mapping. Subsequently, the 2D feature 

map is transferred to 2D point features according to the P2P mapping. 

which belongs to ℝH×W×3, and then processing it 
through a 2D grid. As a result, multiscale features with 
varying resolutions are extracted from the hidden layers. 
As an illustration, let's consider the feature map Fl2D 
from layer l, where Fl2D ∈  ℝHl×Wl×Dl  . Initially, a 
deconvolution operation is conducted to enhance the 
resolution, resulting in the original F�l2D. In line with 
recent advancements in multi-sensor methodologies 
[14], point clouds and images are computed utilizing 
perspective projection and point-to-pixel mapping 
techniques. To elaborate, within a LiDAR point cloud 
P = {pi}i=1 

N ∈ ℝN×3, each 3D point pi  =  (xi, yi, zi)  ∈
 R3 is projected onto a point p�l = (ui, vi) ∈  R2  on the 
image plane according to the following scheme: 

[ui, vi, 1]T =  1
zi

×  K ×  T × [xi, yi, zi, 1]T                  (2)                

where the internal matrices 𝐾𝐾 ∈  𝑅𝑅(3 × 4)  and the 
external matrices 𝑇𝑇 ∈  𝑅𝑅(4 × 4)  represent cameras.  
These matrices K and T are directly provided in KITTI 
[56].  Mapping 3D features is relatively straightforward, 
as depicted in Fig. 3 row A. Specifically, for the point 
cloud P = {(xi, yi, zi)}i=1N , a point-to-voxel mapping in 
the lth layer is executed through 

Ml
voxel  = ���

xi
rl
� , �

yi
rl
� , �

𝑧𝑧𝑖𝑖
rl
� , ��

i=1

N
ϵ ℝN×3,                      (3) 

we get where rl is the resolution of voxelization in 
layer lth. Then, according to the 3-dimensional feature 
Fl3D ∈ ℝŃl×Dl  of a thin twist layer, we obtain a point. 
The 3-dimensional feature F�l3D ∈  ℝN×Dl   through the 
closest interpolation in the original Fl3Dmap feature 
corresponds to Ml

voxel. Finally, points are filtered by 
discarding those that fall outside the field of view of the 
image: 

 F�l3D   = { fi|fi   ∈  F�l3D, Mi,1
img  ≤  H, Mi,2

img  ≤  W}i=1N ∈
 ℝNimg×Dl ,                                                                              (4) 

According to the provided information, the 2D images 
are on the image screen corresponding to those images. 
In the next step, this predicted 2D ground truth is used as 
a monitoring criterion for 2D branch-related issues [5]. 

4.3 Inpainting image 
We use the LAMA [6] model for inpainting the created 

holes. Our goal is to get the masks created by semantic 
segmentation as input to this data network and the output 
of Inpainting. During the early layers of the network, the 
decision regarding global temporal integration is pivotal, 
as it facilitates complex tasks like filling large masks. In 
such scenarios, an effective architecture should 
incorporate units with the widest possible receptive field 
in the primary layers. In the early layers, conventional 
models like ResNet may encounter challenges due to the 
slow expansion of the receptive field. This limitation 
arises because, particularly in the network's early layers, 
the receptive field may not grow as rapidly as desired, as 
they typically employ small convolution kernels (e.g., 
3x3).  In other words, since the convolution kernels in 
the initial layers have little spatial information, many of 
these layers will lack the global context, and this leads to 
a waste of computation and parameters. Additionally, for 
wide masks, it is possible for the entire receptive field of 
the generator to be located at a specific position within 
the mask and only observe the missing pixels. To 
address this issue, particularly prominent in high-
resolution images, an architecture with units possessing 
a larger receptive field and enhanced spatial perception 
capability is required. In recent times, fast Fourier 
convolution [48] has emerged as a solution enabling the 
incorporation of global context in early layers. Utilizing 
a channel fast Fourier transform (FFT), FFC extends its 
reach to encompass a receptive field that spans the 
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entirety of the image dimensions. The two branches 
divided in parallel in this operator are as follows: 

• The local branch employs regular 
convolutions for processing. 

• The global branch employs the real FFT to 
compute the global field. 

• The key characteristic of the real Fast Fourier 
Transform is its applicability solely to real-
valued signals. 

 Moreover, it utilizes the inverse real FFT to ensure 
real-valued output. The FFC performance involves 
several steps: 

a) Applying real FFT2d on an input tensor 

Real FFT2d: ℝH×W ×C  →  ℂH× W2  ×C,                             (5) 

and connecting the and imaginary real parts together 

ComplexToReal: ℂH× W2  ×C  →  ℝH× W2  ×2C,                   (6)  

b) applying a convolution block within the frequency 
domain 

ReLU ◦  BN ◦  Conv1 × 1 ∶  ℝH× W2  ×2C  

→  ℝH× W2  ×2C ,                                      (7) 

c) Restoring the spatial structure involves performing 
an inverse transformation. 

RealToComplex: ℝH× W2  ×2C  →  ℂH× W2  ×C,                  (8) 

Inverse Real FFT2d: ℂH× W2  ×C  →  ℝH×W×C,              (9) 

To sum up, integration of the outputs from both the 
local (a) and global (b) branches occurs. Fig. 4 illustrates 
the architecture of the inpainting network. LaMa 
integrates the subsequent methodologies to boost 
performance and efficiency in large mask inpainting 
tasks: 

FFC: Recently introduced, this method facilitates the 
integration of global context in primary layers. FFC 
harnesses the channel FFT, resulting in a substantial 
receptive field that encompasses the entirety of the 
image. Multi-component loss: To enhance the quality of 
inpainting for large masks, this aspect of the approach 
integrates both perceptual and adversarial loss, resulting 
in a broad receptive field. 

Training method - mask enlargement time: Serving as 
a training strategy for mask enlargement, this component 
enables the model to accurately produce large masks. 
The efficacy of FFC is particularly crucial in this aspect. 

These operators are fully differentiable and easily 
replace conventional convolutions in deep networks.  
Due to the provision of a wide receptive field, 
algorithms are able to access global information through 

elementary layers. This issue is very important for high-
resolution images, because these types of images require 
more accuracy and variety of information for accurate 
and high-quality reconstruction. From the beginning, the 
FFC network is able to provide a wide receiving field 
and take advantage of the global context to achieve the 
best results in tasks such as inpainting high-resolution 
images. 

4.4 Inpainting loss functions 
The problem of inpainting (filling in missing items in 

an image) is ambiguous in nature, as many valid 
alternatives can be provided for regions where 
information is missing, especially when the "holes" are 
wider. Adversarial Loss is employed to address this 
issue and ensure the natural creation of local details. 
Here, a discriminator Dξ(·) is defined that operates at the 
local segment level [57] and differentiates between 
"real" and "fake" segments. "fake" segments are labeled 
"fake" only for pieces of the image that intersect with the 
masked region. This means that the discriminator only 
considers the areas that need to be filled. By employing 
the perceptual loss of HRF (High-Resolution Features), 
this approach facilitates rapid learning to replicate 
known sections of the input image. Subsequently, these 
labeled "real" parts are utilized as local details in 
production images. Overall, leveraging non-saturating 
adversarial loss enables the model to excel in the 
inpainting task by producing valid and high-quality 
images to fill in the missing regions. 

LD  = −𝔼𝔼x�logDξ(x)� − 𝔼𝔼x,m�log Dξ(x�) ⊙  m�
− 𝔼𝔼 x,m �log �1 − Dξ(x�)�

⊙  (1 −  m)�                                    (10) 

 LG  =  −𝔼𝔼x,m�log Dξ(x�)�                                                (11) 

 LAdv  =  sgθ(LD) + sgξ(LG) →  minθ,ξ                     (12) 

where in 

x: This variable is an instance of the dataset that is 
given as input to the model. 

m: The m mask indicates the areas of the image that 
need to be filled. 

x� = fθ(x́): The result of inpainting is the image x́. fθ is a 
function that transforms the image x� into an image with 
new colors according to the input mask m.  

x́ = stack(x ⊙ m, m): Considered as input to 
fθ model. This input is created using mask m to combine 
the original image x with the mask. 

sgvar: This indicates the gradients (Gradient) relative 
to the var variable. Gradients signify the alterations of 
the loss function concerning the desired variable.   
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Fig 4. Large mask inpainting. This network is designed to combine multi-component, adversarial, high receptive field perceptual 

loss and mask generation process based on an internal FFC network during training. 
 

LAdv : This value represents the Adversarial Loss 
function. This loss function quantifies the disparity 
between the reconstructed images(x�) and the actual 
images (x).  

This loss function is employed to quantify the disparity 
between the generated images (x�) and the real images 
(x).  

The purpose of this loss function is to encourage the 
model to produce images closer to real images. 

4.5 Final loss function 
The ultimate loss function serves as a metric to 

evaluate the quality and efficacy of the model in 
generating inpainted images. Also R1  =
 Ex||∇Dξ(x)||2 gradient penalty [58], and perceptual loss 
based on differentiation or so-called feature matching 
loss have been used. This final loss function is defined 
as follows: 

Lfinal  =    αLHRFPL  +  βLDiscPL  +  γR1 +  κLAdv     (13) 

L_HRFPL corresponds to the monitored signal and 
captures the global structure of the image, while 
L_DiscPL, a discriminative loss function, is utilized to 
differentiate between generated and real images. R1 is 
Gradient Penalty, which is used to set the number of 
gradient changes in the optimization process. κ,α,β, γ 
give weight to different values of final loss function. By 
using the final loss function and proper setting of 

parameters, the model improves the quality of inpainting 
images and has better performance in performing tasks. 

5 Results 

5.1 Semantic Segmentation settings 

This section delves into exploring the properties of the 
selected segmentation model, examining its suitability 
for evaluation within 360-degree space using the 
SemanticKITTI dataset. SemanticKITTI delivers 
meticulous semantic annotations, ensuring 
comprehensive coverage for scans in sequences 10-00 of 
the KITTI dataset [56].  Formally, sequence 08 serves as 
the validation set, while the remaining sequences are 
utilized for training the model. Furthermore, the test set 
comprises sequences 11–21 from the KITTI dataset. 
SemanticKITTI comprises sequences of 3D scans of 
street environments. These sequences are collected with 
great care and contain spatial shape and semantic 
information of objects in the environment. One of the 
unique features of SemanticKITTI is the detailed 
semantic annotation for each scan in the sequences. This 
annotation means categorizing the objects in each scan 
and assigning semantic labels to three-dimensional 
points in the environment. To enhance the accuracy 
assessment of the segmentation model, we utilize the 
mean Intersection over Union metric. This metric 
calculates the average IoU overlap across all classes. 
The mIoU measure means the average correspondence 
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of objects with units of objects in images. To compute 
this metric, we first determine the intersection over 
union and the union size between each class or object in 
the image and the unit of objects. Then the IoU is 
calculated for each object and the average of these IoU 
values for all objects is reported as mIoU. 
Mathematically, the mIoU measure is computed as 
follows: 

 mIoU =
1
N
�

TPi
TPi + FPi + FNi

N

i=1

                                     (14) 

Where N represents the number of classes or objects in 
the image, TPi denotes the number of actual matching 
points of objects with the unit of objects for class 𝑖𝑖, FPi 
represents the number of points of incorrect matching of 
objects with the unit of objects for class i, and FNi 
denotes the number of points of non-matching of objects 
with the unit of objects for class i. 

This criterion serves as an indicator of the model's 
performance quality in matching with various objects. In 
addition, we report two other measures. First, we 
calculate the overall accuracy for each class. To 
implement the model, we use a ResNet34 encoder with 
2D complexity. In this method, features are generated 
after each down sampling layer in order to extract 2D 
features. Also, to enhance the speed of the network in 
the 3D model, we use a modified SPVCNN [24] with a 
voxel size of 0.1 and less parameters. The hidden 
dimension of this network is determined to be 64 for the 
SemanticKITTI dataset. The utilization of L layers is 
also critical for amalgamating the collective knowledge. 
In the context of the SemanticKITTI dataset, L is defined 
as 4. Throughout each stage of knowledge transfer, both 

3D and 2D features undergo adjustment to 64 
dimensions via recurrent processing or multilayer neural 
networks. Similarly, the hidden size of multi-layer  
networks and 2D learner in hybrid knowledge fusion is 
also set to 64. 

5.2 The results of the semantic segmentation training 
Within the context of semantic segmentation section, 

both the cross-entropy error function and the Lovasz 
error function [59] are employed. Also, for the 
knowledge transfer process, we have set the ratio of 
detection error value to KL deviation as 1 to 0.05. In 
addition, in the test phase, we use the technique of 
increasing the data of the test time. Training of the 
network was conducted using the NVIDIA Tesla T4 
GPU equipped with 16 GB GDDR6 memory and 2,560 
CUDA cores. A batch size of 6 was employed, and 
approximately 208 hours were invested in model 
training. 

Table 1 presents the outcomes of our training utilizing 
the 2D pass network, showcasing class accuracy and 
evaluation results.  While results for all classes are 
included to demonstrate the model’s robustness, the 
primary focus of this study is on privacy-sensitive 
objects, particularly persons and vehicles. For the person 
category, which combines person (mIoU: 76.6%), and 
bicyclists (mIoU: 87.9%), the model demonstrates strong 
segmentation performance, effectively detecting 
individuals across diverse scenarios. For vehicles, the 
results span multiple subcategories, including car 
(mIoU: 96.5%), truck (mIoU: 75.3%), motorcycle 
(mIoU: 63.3%), and bicycle (mIoU: 45.8%). 

Table 1. Evaluation results of semantic segmentation in different classes 

Method 
                   

RangeNet53++ [17] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9 
Meta-RangeSeg [60] 61.0 90.7 74.6 64.3 29.2 91.1 93.9 43.9 53.1 43.8 82.6 65.5 65.5 63.7 53.1 18.7 64.7 56.3 64.2 
CNN-LSTM [61] 56.9 90.7 75.7 23.3 17.6 90.0 92.6 48.6 74.6 49.6 87.1 60.8 75.4 53.8 74.6 9.2 51.3 63.9 41.5 
3D-MiniNet [62] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6 
GAF-NET [63] 58.8 91.0 74.6 61.9 24.2 89.5 94.7 34.2 33.5 33.6 84.2 65.3 68.4 48.8 50.5 - 61.3 52.2 53.3 
TransRVNet [64] 64.8 91.9 76.5 68.5 29.9 91.0 92.7 43.4 51.2 50.3 84.4 67.6 70.2 62.1 55.5 - 67.6 59.2 62.5 

NAPL [65] 61.6 89.6 73.7 67.1 31.2 91.9 96.6 47.3 32.3 43.6 84.8 69.8 68.8 51.1 53.9 36.5 67.4 59.1 59.2 
SqueezeSegV3 [53] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 
CGGC-Net [66] 60.8 86.9 73.7 59.0 15.7 91.3 94.5 50.8 35.2 40.8 83.9 64.9 68.2 58.8 57.6 - 62.8 52.5 53.3 
MASNet [67] 64.6 96.5 80.0 46.6 0.6 88.5 95.3 83.3 46.3 62.9 87.6 70.3 74.1 73.7 78.1 - 63.5 63.4 42.4 
Ours 64.9 92.7 79.6 42.7 2.6 89.9 96.5 75.3 45.8 63.3 89.4 72.1 77.2 76.6 87.9 0.0 57.6 64.2 54.1 
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These results highlight the model’s robustness in 
segmenting sensitive, including other classes in the 
evaluation ensures a holistic assessment of the model’s 
overall performance, demonstrating its generalization 
ability without compromising accuracy for key classes.  

Table 2 compares the inference times of various 
segmentation algorithms. All evaluations were 
conducted on an NVIDIA Tesla T4 GPU. Our method 
outperforms several state-of-the-art approaches, 
demonstrating superior efficiency and minimal 
computational overhead, making it highly suitable for 
fast processing in large-scale applications. 
Table 2. Comparison of Inference Time across Segmentation 

Algorithms. 

Method Infrance Time 
RangeNet53++ [17] 83.3s 
SqueezeSegV3 [53] 238ms 
PointNet++ [68] 5900ms 
TransRVNet [64] 38.4ms 
RandLA-Net [69] 880ms 
PolarNet [70] 62ms 
Ours 62ms 

5.3 Inpainting results 
To achieve better results in inpainting images with 

large masks, we suggest using [6], which uses a variety 
of strong baselines at lower resolutions. This difference 
in performance and the ability to reveal more during the 
painting process is evident. For training both the image 
completion and discriminator models, we employed the 
Adam optimizer, utilizing fixed learning rates of 0.001 
and 0.0001, respectively, for the networks. Furthermore, 

all models undergo training for 1 million iterations with 
a size of 30. Across all experimental stages, 
hyperparameters are meticulously chosen through the 
coordinate beam search strategy. We used the pre-
trained LaMa model for inpainting. Utilizing the 
coordinate beam search strategy, the following weight 
settings were attained: α = 30, β = 100, γ = 0.001, κ = 
10. It's noteworthy that the hyperparameter search is 
consistently executed on a distinct subset of the 
validation data across all cases. For model tests, the 
Places2 [71] dataset have been used as input data. In the 
design of the models, the established method presented 
in the recent image2image literature has been followed. 
To evaluate the performance of the models, well-
established metrics like the learned perceptual image 
patch similarity (LPIPS) and the initial Frechet inception 
distance (FID) have been employed. These metrics are 
juxtaposed with the L1 and L2 distances at the pixel 
level for comparison. These two criteria, when several 
natural finishes are acceptable, are recognized as more 
suitable criteria for evaluating the performance of masks 
in the inpainting process. We then compare our proposed 
approach with several strong baselines, as shown in 
Table 3. For this evaluation, the performance of various 
inpainting methods is assessed across three different 
mask sizes, with FID and LPIPS as the primary metrics. 
The results demonstrate that LAMA consistently 
outperforms most of the baselines, delivering the best 
performance across all mask sizes. LAMA achieves 
superior results in both FID and LPIPS, particularly in 
the 0.01%-20% and 20%-40% ranges, where it 
maintains a clear advantage over other methods.

 
Table 3. We present a quantitative evaluation of inpainting results based on FID and LPIPS metrics across three different mask sizes: 
0.01%-20%, 20%-40%, and 40%-60%. Our experiments show that LAMA consistently achieves superior performance compared to a 

broad set of baseline methods, delivering more accurate inpainting results that better preserve perceptual quality and align with the 
true distribution of real-world images. 

Method 
0.01%-20% 20%-40% 40%-60% 

FID LPIPS FID LPIPS FID LPIPS 

Deep Fill v2 [34] 23.6854 0.0446 27.3259 0.1362 36.5458 0.2891 

CTSDG [72] 24.9852 0.0458 29.2158 0.1429 37.4251 02712 

WaveFill [73] 30.4259 0.0519 39.8519 0.1365 56.7527 0.3395 

LDM  [74] - - - - 27.3619 0.2675 

WNet [75] 20.4925 0.0387 24.7436 0.1136 32.6729 0.2416 

MISF [76] 21.7526 0.0357 30.5499 0.1183 44.4778 0.2278 

CMT [77] 22.1841 0.0364 32.0184 0.1184 35.1688 0.2378 

MxT [78] 15.3980 0.0334 23.7109 0.1106 26.9155 0.2372 

LAMA [6] 14.7288 0.0354 22.9381 0.1079 25.9436 0.2124 

 

Table 4 compares the inference times of eight image 
inpainting algorithms, all evaluated on an NVIDIA Tesla 

T4 GPU. AOT-GAN [80] achieves the fastest 
performance with an inference time of 0.05 seconds,  
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while LaMa [6], the method employed in this study, 
provides competitive efficiency at 0.5 seconds. DDRM 
[65] follows with a fast inference time of 1.5 seconds. In 
contrast, Score-SDE [79] takes 25 seconds, RePAINT 
[81] requires 150 seconds, and ICT [82] takes 110 
seconds. DSI [83] has an inference time of 30 seconds. 
IAGAN [84] exhibits the longest inference time at 350 
seconds. These differences highlight the trade-offs 
between computational efficiency and model 
complexity. 
 

Table 4. Comparison of Inference Time across Inpainting 
Algorithms. 

Method Infrance Time 
Score-SDE [79] 25S 
AOT-GAN [80] 0.05S 
DDRM [65] 1.5S 
RePAINT [81] 150S 
ICT [82] 110S 
DSI [83] 30S 
IAGAN [84] 350S 
LaMa [6] 0.5S 

 

6  Final results 

We used Google Street View images to evaluate our 
method. GSV images have special challenges for 

segmentation and inpainting due to the wide range of 
imaging angles that provide 360-degree information. 
The features of these images include the following: 

• 360-degree coverage: These images provide 
information from different angles and 
completely in 360 degrees, which challenges 
segmentation and inpainting every part of this 
image. 

• Spatial and temporal changes: Spatial and 
temporal changes in a 360-degree image can 
reduce the stability and accuracy of 
segmentation and inpainting because objects 
and objects may be seen in different positions 
and times. 

• Differences in lighting and shadows: Due to 
differences in lighting during the day and in 
different locations, it may become difficult to 
distinguish boundaries and separate objects in 
the image. 

• Changes in scale and distance: Objects in 
GSV images may be seen at different 
distances and scales, which can complicate 
their detection, segmentation, and inpainting. 

As depicted in Fig. 5, our method effectively 
overcomes these challenges and achieves superior 
results.

Fig. 5 The results obtained from our method. the left column portrays the input image, the middle column illustrates the 
segmented image and the right column showcases the inpainting output. 

7 Conclusion 

This paper introduces a novel approach that yields 
substantial benefits by removing people and vehicles 

from street view images and subsequently employing 
inpainting techniques to fill the resulting holes. One of 
the basic advantages of this method is to increase the 
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privacy of people in the images. Due to the fact that 
street image monitoring technologies are becoming more 
popular day by day, people's privacy is at risk. This 
method allows us to remove people and vehicles from 
images while keeping the images attractive. This 
research utilizes 2DPASS semantic segmentation, 
providing an extensive training framework to enhance 
LIDAR point cloud semantic segmentation performance 
through the integration of prior knowledge. By 
leveraging semantic modeling, 2DPASS extracts 
comprehensive semantic and structural insights from 
multimodal data, thereby enhancing the effectiveness of 
a 3D network. Furthermore, in inpainting tasks, a 
straightforward and single-step approach for addressing 
large masks has been explored. Fast Fourier 
convolutions enable our method to generalize effectively 
to higher resolutions while maintaining more efficient 
parameterization compared to baseline techniques. This 
method creates a significant improvement in the clarity 
and cleanliness of images after removing people and 
vehicles. By removing unwanted objects and applying 
inpainting techniques, images are displayed without 
interference. This helps users to better access the 
important information of the images. In addition, this 
method can be effective in reducing the interference and 
occupation of unwanted objects (from the 18 classes we 
taught) in the images and display the images more 
perfectly. 
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